Synthesis and characterization of tetranuclear hydroxocarbonyl complexes of molybdenum and tungsten, $\left[\mathrm{Et}_{4} \mathrm{~N}_{4}\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}\right.$ and $\left[\mathrm{Et}_{4} \mathrm{~N}_{4}\left[\mathrm{~W}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}\right.$

Jiann T. Lin *, Show K. Yeh,
Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan (Republic of China)
Gene H. Lee, and Yu Wang *
Department of Chemistry, National Taiwan University, Taipei, Taiwan (Republic of China)
(Received May 31st, 1988)

Abstract

Reaction of $\mathbf{M}(C O)_{3}($ PMTA $)(M=W, M o ; ~ P M T A=1,1,4,7,7-p e n t a m e t h y l d i e t h-~$ ylenetriamine) with a stoichiometric amount of hydroxide ion in aqueous THF solution yields $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}(1, \mathrm{M}=\mathrm{W} ; 2, \mathrm{M}=\mathrm{Mo})$. These tetranuclear metal carbonyl complexes were isolated as their $\mathrm{Et}_{4} \mathrm{~N}^{+}$salts. The crystal structures of both complexes have been determined. Compounds 1 and 2 are isostructural; the crystals are monoclinic, space group $C 2 / c, Z=4$, with unit cell dimensions a 23.86(3), b 12.317(7), c 23.21(1) A, β 123.8(2) ${ }^{\circ}$ for 1; and a 23.888(7), b 12.300(2), c 23.254(3) $\AA, \beta 123.85(2)^{\circ}$ for 2 . The anions consist of a distorted cubic $A_{4} B_{4}$ ($\mathrm{A}=$ metal, $\mathrm{B}=$ oxygen) core with triply bridging hydroxide groups and $\mathrm{M}(\mathrm{CO})_{3}$ units. The M-M distances (average 3.59(6) \AA for 1 and 3.58(6) \AA for 2) within the $\mathrm{M}_{4} \mathrm{O}_{4}$ core clearly show non-bonding between metal atoms which is consistent with a closed-shell metal configuration.

Introduction

Transition-metal oxide compounds are of fundamental importance in the catalytic oxidation of hydrocarbons, and in the polymerization and metathesis of olefins [1]. The catalytic activities of the metal oxides are thought to depend on their acid-base properties [2]. Polynuclear organometallic complexes containing hydroxyl groups are interesting not only because they could serve as models for the acid-base character of metal oxides, but also because they are closely related to the recently developed oxide-supported organometallic catalysts [3], such as $\mathrm{Mo}(\mathrm{CO})_{6}+$ alumina $\rightarrow \mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{ads})+3 \mathrm{CO}$. Polynuclear carbonyl clusters containing hydroxyl ligands
are not very common. Of these complexes, $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{OH})\right]_{4}[4],\left[\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{NO})-\right.$ $(\mathrm{OH})]_{4}$ [5], and $\left[\mathrm{Cr}(\mathrm{CO})_{3}(\mathrm{OH})\right]_{4}{ }^{4-}[6]$ all consist of four tetrahedral arrays of $\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}(\mathrm{~L}=\mathrm{CO}$ or NO) units held together by four triply-bridging OH groups. This cubic tetranuclear structure has also been observed in some closely related complexes containing organo-oxo or organo-thio ligands such as $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)\right]_{4}$ $[6],\left[\mathrm{Cr}(\mathrm{CO})_{3}(\mathrm{OMe})\right]_{4}^{4-}[7]$, and $\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{SMe})\right]_{4}[8]$.

Protonation of the tri $\left(\mu\right.$-hydroxo) trianion $\left[\mathrm{M}_{2}(\mu-\mathrm{OH})_{3}(\mathrm{CO})_{6}\right]^{3-}(\mathrm{M}=\mathbf{M o}, \mathrm{W})$ [9] results in the formation of Hieber's acid, $\left[\mathrm{HM}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}$, originally formulated as $\mathrm{H}_{3} \mathrm{M}_{2}(\mu-\mathrm{OH})_{3}(\mathrm{CO})_{6}$. The presence of four triply bridging hydroxo groups and the tetrahedral array of $\mathrm{M}(\mathrm{CO})_{3}$ units in Hieber's acids has been confirmed on the basis of the structural characterization of the tungsten derivatives $\left[\mathrm{HW}(\mathrm{CO})_{3}(\mathrm{OH})\left(\mathrm{PPh}_{3} \mathrm{O}\right)\right]_{4}[10]$. It is surprising that the "conjugate base" of Hieber's acid, $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$, being iso-electronic with $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}$, remains elusive in the literature. There is no reason why these anions should not exist. The chromium cognate in this family, $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$, has recently been successfully isolated [6]. Here we report our successful synthesis, and the characterization of the conjugate bases of two compounds, $\left[\mathrm{Et}_{4} \mathrm{~N}_{4}\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}(\mathrm{M}=\mathrm{W}\right.$, Mo).

Experimental

All manipulations were carried out under purified N_{2} using standard Schlenk techniques, or in a Vacuum Atmosphere DL-08/85 drybox. THF was distilled from blue Na -benzophenone ketyl solution before use. Acetonitrile and methanol were purged thoroughly with dry N_{2}, refluxed over $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{Mg} / \mathrm{I}_{2}$, respectively, and distilled under N_{2}. All other solvents were stored over $4 \AA$ molecular sieves and purged with N_{2} before use. $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$ were purchased from Strem Chemicals Inc.; 1,1,4,7,7-pentamethyldiethylenetriamine (PMTA) was purchased from Eastman Kodak; tetraethylammonium hydroxide ($20 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}$) from Merck. $\mathbf{M}(\mathrm{CO})_{3}$ (PMTA) $(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ was prepared by a published procedure [1]. The IR spectra were recorded on a Perkin-Elmer 880 spectrometer. The NMR spectra were recorded on a Bruker MSL 200 spectrometer. Melting points were determined in N_{2}-filled capillaries using a Buchi 520 apparatus and are uncorrected. Elemental analyses were performed by Taipei Regional Instrumental Center.
$\left[E t_{4} \mathrm{~N}_{4}\left[W(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4} \text { (1). To a solution of W(CO) }\right)_{3}(\mathrm{PMTA})(2.10 \mathrm{~g}, 4.76$ mmol) in 60 ml of THF was added 40 ml of $\mathrm{H}_{2} \mathrm{O}$ and $3.5 \mathrm{ml}(4.76 \mathrm{mmol})$ of aqueous $\mathrm{Et}_{4} \mathrm{NOH}\left(20 \mathrm{wt}\right.$. \%). The contents of the flask were heated at $85^{\circ} \mathrm{C}$ for 5 h . The solution separated into two layers during the reaction. After cooling, the solution was evaporated to dryness. The yellow crystals so obtained were washed with $\mathrm{MeOH}(2 \times 20 \mathrm{ml})$, THF ($2 \times 20 \mathrm{ml}$), and dried in vacuo. Yield: $1.74 \mathrm{~g}, 89 \%$ based on W(CO) ${ }_{3}$ (PMTA). IR: $\left(\nu(\mathrm{CO}), \mathrm{CH}_{3} \mathrm{CN}\right) 1868(\mathrm{~s}), 1727(\mathrm{vs}) \mathrm{cm}^{-1} ;(\nu(\mathrm{OH})$, Nujol mull) $3676(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{13} \mathrm{C}$ NMR ($\delta 0 \mathrm{ppm}$ for TMS): $\left(\delta(\mathrm{CO}), \mathrm{CD}_{3} \mathrm{CN}\right) 231$ ppm. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 3.28\left(\mathrm{q}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{tt}, J(\mathrm{H}-\mathrm{N})$ $\left.1.7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$. The compound decomposes at $181^{\circ} \mathrm{C}$. Anal. Found: C, 31.55; H, 5.23; N, 3.09. $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{~W}_{4}$ calcd.: C, 31.82; H, 5.10; $\mathrm{N}, 3.37 \%$. The μ_{3}-OD derivative of 1 was prepared similarly, except that Et_{4} NOD, $\mathrm{D}_{2} \mathrm{O}$, and $\mathrm{CD}_{3} \mathrm{OD}$ were used in the reaction. $\mathrm{Et}_{4} \mathrm{NOD}$ was prepared as follows: The solid $\mathrm{Et}_{4} \mathrm{NOH}$ obtained by removal of water from the commercial aqueous $\mathrm{Et}_{4} \mathrm{NOH}$
was stirred with a 100 -fold excess of $\mathrm{D}_{2} \mathrm{O}$. The process was repeated three times to ensure maximal H / D exchange. The $\mu_{3}-\mathrm{OD}$ derivative of 1 has a $\nu(\mathrm{OD})$ band at $2712 \mathrm{~cm}^{-1}$.
$\left[\mathrm{Et}_{4} \mathrm{~N}_{4}\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3} \mathrm{OH}\right)\right]_{4}\right.$ (2). To a solution of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{PMTA})(500 \mathrm{mg}$, 1.42 mmol) in 25 ml of THF was added 25 ml of $\mathrm{H}_{2} \mathrm{O}$ and aqueous $\mathrm{Et}_{4} \mathrm{NOH}$ (1.0 $\mathrm{ml}, 1.42 \mathrm{mmol}$). The solution was heated at $85^{\circ} \mathrm{C}$ for 2 h . After cooling, the solution was evaporated to dryness and the yellow crystals obtained were washed with $\mathrm{MeOH}(2 \times 20 \mathrm{ml})$, THF ($2 \times 20 \mathrm{ml}$), and then dried in vacuo. Yield: $300 \mathrm{mg}, 65 \%$ based on $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{PMTA})$. IR: $\left(\nu(\mathrm{CO}), \mathrm{CH}_{3} \mathrm{CN}\right) 1871(\mathrm{~s}), 1736(\mathrm{vs}) \mathrm{cm}^{-1}$; $(\nu(\mathrm{OH})$, Nujol mull) 3691(m) $\mathrm{cm}^{-1} .{ }^{13} \mathrm{C}$ NMR: ($\left.\delta(\mathrm{CO}), \mathrm{CD}_{3} \mathrm{CN}\right) 234 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 3.28\left(\mathrm{q}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{tt}, J(\mathrm{H}-\mathrm{N}) 1.7 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right),-0.27 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$. The compound decomposes at $189^{\circ} \mathrm{C}$. Anal. Found: C, 40.13; H, 6.68; N, 4.23. $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Mo}_{4} \mathrm{~N}_{4} \mathrm{O}_{16}$ calcd.: C, $40.38 ; \mathrm{H}, 6.47$; N, 4.28%. The μ_{3}-OD derivative of 2 was prepared similarly. It has a $\nu(O D)$ band at 2712 cm^{-1}.

Crystallographic studies. Crystals of 1 and 2 suitable for X-ray diffraction measurements were grown by slow diffusion of THF into a concentrated solution of $\mathbf{1}$ or $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$. Crystals were coated with Nujol and mounted in the thin-walled glass capillary tubes under nitrogen. Diffraction measurements were made on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromated Mo- K_{α} radiation ($\lambda 0.7107 \AA$) with the $\theta-2 \theta$ scan mode. Unit cells were determined from

Table 1
Crystal data for compound 1 and 2

	1	2
Formula	$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{~W}_{4}$	$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{MO}_{4}$
Formula wt	1660.6	1308.9
a, \AA	$23.86(3)$	$23.888(7)$
b, \AA	$12.317(7)$	$12.300(2)$
c, \AA	$23.21(1)$	$23.254(3)$
β, deg	$123.8(2)$	$123.84(2)$
Cryst syst	monoclinic	monoclinic
Space group	$C 2 / c$	$C 2 / c$
Z	4	4
V, \AA^{3}	5668.21	5674.37
$d_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.946	1.532
Cryst size, mm	$0.65 \times 0.65 \times 0.65$	$0.35 \times 0.35 \times 0.43$
Radiation	$\mathrm{Mo}-K_{\alpha}(\lambda=0.7107 \AA)$	$\mathrm{Mo}-K_{\alpha}$
$\mu\left(\mathrm{cm}{ }^{-1}\right)$	83.3	9.0
Transmission factors		
(max; min)	$1.00 ; 0.79$	$1.00 ; 0.94$
2θ range	$0-50$	$0-50$
Octants	$\pm h,+k,+l$	$\pm h,+k,+l$
	$-28 \sim 28,0 \sim 14,0 \sim 27$	$-28 \sim 28,0 \sim 14,0 \sim 27$
No. of unique reflns	4978	4979
Reflns with $I>3 \sigma$	4147	3907
No. of variables	288	288
$R ; R_{w}$	$0.038 ; 0.046$	$0.041 ; 0.061$
Extinction coeff	$2.7(4) \times 10^{-4}$	$5.4(4) \times 10^{-4}$

Table 2
Atomic coordinates and $B_{\text {eq }}$ for $\left[W(C O)_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}\left(\mathrm{NEt}_{4}\right)_{4}$ esd's refer to the last digit
$B_{\mathrm{eq}}=\frac{8 \pi^{2}}{3} \cdot \sum_{i j} u_{i j} a_{i}^{\star} a_{j}^{\star} a_{i} a_{j}$

	\boldsymbol{x}	y	z	$B_{\text {eq }}{ }^{\text {a }}$
W(1)	$0.591436(18)$	0.02476(3)	0.313239(18)	2.458(19)
W(2)	0.485650(18)	-0.17166(3)	$0.319909(18)$	2.372(18)
C(1)	0.6719(5)	0.0179(10)	0.3151(5)	4.2(6)
C(2)	0.6549(5)	$0.0223(8)$	0.4117(5)	3.8(6)
C(3)	0.6052(6)	$0.1774(9)$	0.3174(6)	4.4(7)
C(4)	0.5402(5)	-0.1711(8)	0.4199(5)	3.4(6)
C(5)	0.4082(5)	-0.1678(9)	0.3249(5)	3.5(6)
C(6)	0.4860(5)	-0.3253(8)	0.3349(5)	3.6(6)
$\mathrm{O}(1)$	0.7242(4)	0.0161(9)	0.3186(5)	7.1(7)
O(2)	0.6943(4)	0.0227 (8)	0.4726(4)	6.9(6)
O(3)	0.6159(5)	0.2725(7)	0.3201(5)	6.9(7)
O(4)	0.5710(4)	-0.1740(8)	0.4796(4)	5.9(5)
O(5)	0.3608(4)	-0.1691(7)	0.3277(4)	5.3(5)
O(6)	0.4855(4)	-0.4164(6)	0.3493(4)	5.7(5)
O(7)	0.4906(3)	0.0047(5)	0.2986(3)	2.5(3)
$\mathrm{O}(8)$	0.5631(3)	-0.1514(5)	$0.2951(3)$	2.3(3)
N1A	0.2735(4)	0.4148(7)	0.6689(4)	3.9(5)
C1A	0.2015(6)	0.4451(11)	0.6283(6)	5.7(8)
C2A	0.1586(6)	0.3901(14)	0.6517(7)	7.1(10)
C3A	$0.3061(7)$	0.4780(11)	$0.6392(6)$	5.8(9)
C4A	0.3801(6)	0.4518(12)	$0.6732(7)$	6.1(9)
C5A	0.2827 (7)	$0.2955(12)$	0.6649(8)	6.9(10)
C6A	0.2511(9)	$0.2500(12)$	0.5931(8)	8.4(12)
C7A	0.3080(6)	0.4445(13)	0.7445(6)	6.4(9)
C8A	0.3056(7)	$0.5672(14)$	0.7562(8)	8.5(12)
N1B	0.4086(5)	0.6886 (7)	0.5117(5)	4.4(6)
C1B	$0.4213(19)$	0.786(3)	0.5523(19)	$9.9(10)$
C18'	0.4423 (10)	$0.7687(17)$	0.4919(10)	3.8(4)
C2B	0.4476 (7)	0.8833(11)	0.5173(7)	$6.2(3)$
C3B	0.4005(18)	0.599(3)	0.5481(18)	9.2(9)
C3B'	0.4089(15)	0.577(3)	0.4813(15)	7.1(7)
C4B	$0.3664(11)$	0.4899(17)	0.4988(11)	11.4(6)
C5B	$0.3336(18)$	$0.709(3)$	$0.4314(18)$	9.3(9)
C5B'	$0.3422(14)$	0.7163(23)	$0.5001(14)$	6.3(6)
C6B	0.2835(12)	0.7345(20)	0.4356(12)	13.7(7)
C7B	0.449(3)	0.649(5)	0.487(3)	17.6(20)
C7B'	0.4499(13)	$0.6934(21)$	0.5973 (13)	5.7(6)
C8B	$0.524(3)$	0.639(4)	0.568(3)	15.2(16)
C8B'	$0.5213(20)$	0.679(3)	0.6371 (20)	10.2(11)
$\mathrm{HO}(7)$	0.494(3)	0.052(6)	0.344(3)	6.3
HO(8)	0.406(4)	0.219(6)	0.681(4)	6.3

${ }^{a^{\prime} B_{\text {eq }}}$ is the mean of the principal axes of the thermal ellipsoid occupancy of C1B, C1B', C3B, C3B', $\mathrm{C} 5 \mathrm{~B}, \mathrm{C}^{\prime} \mathrm{B}^{\prime}, \mathrm{C} 7 \mathrm{~B}, \mathrm{C}^{\prime} \mathrm{B}^{\prime}, \mathrm{C} 8 \mathrm{~B}, \mathrm{C}^{\prime} \mathrm{B}^{\prime}=0.5$.
centering 25 reflections in the 2θ range $16.96-23.80^{\circ}$ for 1 and $23.34-27.14^{\circ}$ for 2. Other relevant experimental details are listed in Table 1. Absorption corrections according to ψ scans of three reflections were applied. All the data processing was carried out on a PDP 11 and VAX 780 using the NRCC SDP program [12]. The
coordinates of the tungsten or molybdenum atoms were obtained from Patterson syntheses. The coordinates of all the remaining atoms were obtained from a series of structure factor calculations and Fourier syntheses. The structures were refined by

Table 3
Atomic coordinates and $B_{\text {eq }}$ for $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)_{4}\left(\mathrm{NEt}_{4}\right)_{4}\right.$ eds's refer to the last digit.
$B_{\mathrm{eq}}=\frac{8 \pi^{2}}{3} \cdot \sum_{i j} u_{i j} a_{i}^{\star} a_{j}^{\star} a_{i} a_{j}$

	x	y	z	$B_{\text {eq }}{ }^{\text {a }}$
MO(1)	0.591188(23)	0.02546(4)	$0.312875(24)$	2.422(23)
MO(2)	$0.485675(23)$	-0.17021(4)	$0.319647(23)$	2.342(23)
C(1)	0.6718(3)	0.0193(6)	0.3147(3)	4.0(4)
C(2)	0.6542(3)	0.0229(5)	$0.4110(3)$	3.6(4)
C(3)	0.6055(3)	0.1794(5)	0.3171(4)	3.9(4)
C(4)	0.5391(3)	-0.1707(5)	0.4184(3)	3.3(3)
C(5)	0.4089(3)	-0.1662(5)	0.3255(3)	3.3(3)
C(6)	0.4847(3)	-0.3221(5)	0.3348(3)	3.4(3)
O(1)	0.7243(3)	0.0174(6)	0.3200 (3)	6.9(4)
O(2)	0.6960(3)	0.0233(5)	0.47107(24)	6.8(4)
O(3)	0.6185(3)	0.2722(4)	0.3212(3)	6.8(4)
$\mathrm{O}(4)$	0.5706(3)	-0.1778(5)	0.47951(23)	5.9(3)
O(5)	0.36207(24)	-0.1686(5)	0.3296 (3)	5.5(4)
O(6)	0.4841(3)	-0.4135(4)	$0.3517(3)$	5.6(3)
O(7)	0.49037(17)	0.0072(3)	$0.29974(17)$	2.42 (19)
O(8)	0.56425(17)	-0.1523(3)	0.29593(18)	2.34 (19)
N1A	0.27299(25)	0.4143(5)	0.6685(3)	3.7(3)
C1A	0.2016(4)	0.4460 (7)	$0.6274(4)$	5.8(5)
C2A	0.1585(4)	0.3882(9)	0.6507(5)	6.8(6)
C3A	0.3069(4)	0.4767(7)	0.6395(4)	5.6(5)
C4A	0.3804(4)	0.4512(8)	0.6734(4)	6.0(6)
C5A	0.2831(4)	0.2919(8)	$0.6664(5)$	6.4(6)
C6A	0.2531(5)	0.2495(8)	$0.5936(5)$	7.7(7)
C7A	0.3074(4)	0.4415(8)	0.7446(4)	5.9(5)
C8A	0.3051(5)	0.5643(9)	$0.7564(5)$	7.5(7)
N1B	0.4096 (3)	0.6889 (5)	0.5129(3)	4.1(3)
C1B	$0.4225(11)$	$0.7896(19)$	0.5492(12)	8.7(6)
C2B	0.4478(4)	0.8844(8)	$0.5180(5)$	6.42(20)
C3B	$0.3972(11)$	$0.5960(21)$	0.5473(12)	9.4(6)
C4B	0.3709(6)	$0.4890(10)$	$0.4994(6)$	9.6(3)
C5B	$0.3377(12)$	$0.7094(21)$	$0.4345(13)$	9.9(6)
C6B	0.2845 (7)	$0.7327(12)$	0.4333(8)	12.5(4)
C7B	$0.4555(13)$	$0.6564(23)$	$0.4881(14)$	11.6(8)
C8B	0.5292(13)	$0.6411(23)$	$0.5743(14)$	11.5(8)
C1B'	0.4441 (7)	$0.7704(12)$	0.4920 (7)	4.2(3)
C3B ${ }^{\prime}$	0.4107(9)	$0.5773(16)$	$0.4843(9)$	6.7(4)
C5B'	0.3421 (9)	$0.7174(15)$	$0.5005(9)$	6.1(4)
C7B'	0.4510 (8)	$0.6975(14)$	0.5980(9)	5.6(4)
C8B'	$0.5235(12)$	$0.6731(19)$	0.6340 (12)	9.0(6)
HO(7)	0.494(3)	0.052(6)	0.344 (3)	6.3
HO(8)	0.594(4)	-0.219(6)	0.319(4)	6.3

[^0]minimizing $\Sigma_{i} w_{i}\left(F_{i}^{\mathrm{obs}}-F_{i}^{\mathrm{cal}}\right)^{2}$, where w_{i} was calculated from the counting statistics. The atomic scattering factors f_{0} and anomalous dispersion terms $f^{\prime}, f^{\prime \prime}$ were taken from ref. 13. All the non-hydrogen atoms, except the ethyl carbon atoms of NIB, were refined anisotropically. Hydrogen atoms in the anions were located in the final difference Fourier maps and refined. A secondary extinction correction was included in the refinement. One of the cations (NIB) was found to have some disorder atoms; namely all the α-carbon atoms and one of the β-carbon atoms. The disordered atoms, listed in Tables 2 and 3, are marked with an apostrophe (').

Results

Reaction of $\mathbf{M}(\mathrm{CO})_{3}(\mathrm{PMTA})$ (PMTA $=1,1,4,7,7$-pentamethyldiethylenetriamine) with one equivalent of $\mathrm{Et}_{4} \mathrm{NOH}$ in aqueous THF at $85^{\circ} \mathrm{C}$, gave the yellow crystalline compound, $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{4}\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}(1, \mathrm{M}=\mathrm{W} ; 2, \mathrm{M}=\mathrm{Mo}$). The infrared carbonyl region of 1 and 2 exhibited the two-band pattern ($\nu(\mathrm{CO}) 1868(\mathrm{~s})$, $1727(\mathrm{vs}) \mathrm{cm}^{-1}$ for 1 , and $1871(\mathrm{~s}), 1736(\mathrm{vs}) \mathrm{cm}^{-1}$ for 2) characteristic of a $\mathrm{M}(\mathrm{CO})_{3}$ moiety. Only one carbonyl signal ($\delta 231 \mathrm{ppm}$ for 1 and 234 ppm for 2) in the ${ }^{13} \mathrm{C}$ NMR spectra was observed, indicating that all the carbonyl groups are equivalent in the solution. A $\nu(\mathrm{OH})$ band of medium intensity observed at $3676 \mathrm{~cm}^{-1}$ for compound 1 , and at $3691 \mathrm{~cm}^{-1}$ for compound 2 is indicative of the presence of a bridging hydroxide ligand. Peaks assignable to the $\mu_{3}-\mathrm{OH}$ resonance appeared at δ 0.96 (compound 1) and at -0.27 ppm (compound 2) in the ${ }^{1} \mathrm{H}$ NMR spectra. In order to characterize these species fully, single crystal structural determinations of 1 and 2 were undertaken. The structure of $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$ is shown in Fig. 1. Atomic parameters are given in Table 2 and 3. Selected bond distances and angles are collected in Tables 4 and 5.

Fig. 1. ORTEP drawing of $\left[\mathrm{MO}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$. Thermal ellipsoids are drawn with 50% probability boundaries.

Table 4
Selected interatomic distances (\AA) and angles (deg) with esd's for $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}^{4-a}$

Distances			
W(1)-W(1)a	3.661(9)	W(1)-W(2)	$3.5616(24)$
$\mathbf{W}(1)-W(2) a$	$3.530(4)$	W(2)-W(2)a	$3.6709(24)$
W(1)-C(1)	1.899(10)	$W(1)-C(2)$	1.915(11)
W(1)-C(3)	1.902(11)	W(2)-C(4)	1.928(10)
W(2)-C(5)	1.915(10)	W(2)-C(6)	1.924(10)
W(1)-O(7)	2.250 (6)	W(1)-O(7)a	2.231(8)
W(1)-O(8)	2.241(6)	$\mathrm{W}(2)-\mathrm{O}(7)$	2.245 (6)
W(2)-O(8)	$2.236(6)$	W(2)-O(8)a	$2.254(6)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1.205(13)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.184(13)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.193(14)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.152(11)
$\mathrm{C}(5)-\mathrm{O}(5)$	1.169 (12)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.172(12)
$\mathrm{O}(7)-\mathrm{O}(7) \mathrm{a}$	2.535(11)	$\mathrm{O}(7)-\mathrm{O}(8)$	$2.618(8)$
$\mathrm{O}(7)-\mathrm{O}(8) \mathrm{a}$	$2.639(8)$	$\mathrm{O}(8)-\mathrm{O}(8) \mathrm{a}$	2.537(12)
Angles			
W(1)-O(7)-W(1)a	109.6(3)	W(1)-O(7)-W(2)	104.83(23)
W(1)a-O(7)-W(2)	104.13(24)	W(1)-O(8)-W(2)	105.41(23)
W(1)-O(8)-W(2)a	103.47(22)	W(2)-O(8)-W(2)a	109.7(3)
O(7)-W(1)-O(7)a	68.91(24)	$\mathrm{O}(7)-\mathrm{W}(1)-\mathrm{O}(8)$	71.32(21)
$\mathrm{O}(7) \mathrm{a}-\mathrm{W}(1)-\mathrm{O}(8)$	72.32(21)	$\mathrm{O}(7)-\mathrm{W}(2)-\mathrm{O}(8)$	71.52(20)
O(7)-W(2)-O(8)a	71.81(20)	$\mathrm{O}(8)-W(2)-O(8) a$	68.80(24)
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	177.4(9)	$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.9(9)
$W(1)-C(3)-O(3)$	177.6(10)	$\mathrm{W}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	177.1(9)
W(2)-C(5)-O(5)	177.8(10)	$\mathrm{W}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	173.4(9)

${ }^{\text {a }}$ Atoms, $\mathrm{W}(1) \mathrm{a}, \mathrm{W}(2) \mathrm{a}, \mathrm{O}(7) \mathrm{a}, \mathrm{O}(8) \mathrm{a}$, are symmetry equivalent.

Complexes 1 and 2 are isostructural, and have the same structure as the chromium analogue. Thus they all crystallize in the same space group *. The anions of $\mathbf{1}$ and $\mathbf{2}$ are composed of four $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{OH})\right]^{-}$units in a cubane-like arrangement with metal and hydroxide oxygen atoms located at alternate corners of a distorted $\mathrm{M}_{4} \mathrm{O}_{4}$ cube. In 1, the average $\mathrm{W}-\mathrm{W}$ distance is $3.59(6) \AA$, and the average $\mathrm{O}-\mathrm{O}$ distance is $2.60(5) \AA$. In 2, the average Mo-Mo distance is $3.58(6) \AA$ while the average $\mathrm{O}-\mathrm{O}$ distance is $2.65(5) \AA$. The coordination geometry of each metal is a distorted octahedron. Each metal is bonded to three cis-CO ligands and three O atoms of the hydroxide groups. Each μ_{3}-oxygen atom is bonded to three metal atoms and a hydrogen atom. Although such hydrogen atom positions cannot be ascertained from X-ray diffraction, the IR spectra (vide supra) do indicate the existence of hydroxide groups.

Other relevant bond distances and angles are as follows. The average $\mathrm{W}-\mathrm{O}\left(\mu_{3}\right)-\mathrm{W},\left[\mathrm{Mo}-\mathrm{O}\left(\mu_{3}\right)-\mathrm{Mo}\right]$ and $\mathrm{O}\left(\mu_{3}\right)-\mathbf{W}-\mathbf{O}\left(\mu_{3}\right),\left[\mathrm{O}\left(\mu_{3}\right)-\mathrm{Mo}-\mathrm{O}\left(\mu_{3}\right)\right]$ bond angles are $106(3)^{\circ}\left[105(3)^{\circ}\right]$ and $71(1)^{\circ}\left[72(2)^{\circ}\right]$, respectively. Within the tungsten (molybdenum) coordination sphere, the $\mathrm{W}-\mathrm{O}\left(\mu_{3}\right)$ distance is 2.24(1) \AA (2.25(1) \AA) and the $\mathrm{W}-\mathrm{C}_{\mathrm{CO}}\left(\mathrm{Mo}-\mathrm{C}_{\mathrm{CO}}\right)$ distance is $1.92(1) \AA(1.91(1) \AA)$. The terminal carbonyl

[^1]Table 5
Selected interatomic distances (\AA) and angles (deg) with esd's for $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-a}$

Distances			
$\mathbf{M o}(1)-\mathrm{Mo}(1) \mathrm{a}$	3.6524(17)	$\mathrm{Mo}(1)-\mathrm{Mo}(2)$	3.5513(9)
$\mathrm{Mo}(1)-\mathrm{Mo}(2) \mathrm{a}$	3.5153(9)	$\mathrm{Mo}(2)-\mathrm{Mo}(2) \mathrm{a}$	3.6644(10)
$\mathrm{Mo}(1)-\mathrm{C}(1)$	$1.905(7)$	$\mathrm{Mo}(1)-\mathrm{C}(2)$	1.910 (6)
$\mathrm{Mo}(1)-\mathrm{C}(3)$	1.917(7)	Mo(2)-C(4)	1.908(6)
$\mathbf{M o}(2)-\mathrm{C}(5)$	1.912(6)	$\mathrm{Mo}(2)-\mathrm{C}(6)$	$1.903(6)$
Mo(1)-O(7)	2.264(4)	$\mathrm{Mo}(1)-\mathrm{O}(7) \mathrm{a}$	2.241(3)
$\mathrm{Mo}(1)-\mathrm{O}(8)$	2.251(4)	$\mathrm{Mo}(2)-\mathrm{O}(7)$	2.246(4)
$\mathrm{Mo}(2)-\mathrm{O}(8)$	2.243(4)	$\mathrm{Mo}(2)-\mathrm{O}(8) \mathrm{a}$	2.264(3)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.188(8)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.181(8)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.172(8)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.183(7)
$\mathrm{C}(5)-\mathrm{O}(5)$	1.177(7)	C(6)-O(6)	$1.195(8)$
$\mathrm{O}(7)-\mathrm{O}(7) \mathrm{a}$	2.598(7)	$\mathrm{O}(7)-\mathrm{O}(8)$	$2.672(5)$
$\mathrm{O}(7)-\mathrm{O}(8) \mathrm{a}$	$2.695(5)$	$\mathrm{O}(8)-\mathrm{O}(8) \mathrm{a}$	$2.585(7)$
Angles			
$\mathrm{MO}(1)-\mathrm{O}(7)-\mathrm{Mo}(1) \mathrm{a}$	108.36(15)	$\mathrm{Mo}(1)-\mathrm{O}(7)-\mathrm{Mo}(2)$	103.91(14)
$\mathrm{Mo}(1) \mathrm{a}-\mathrm{O}(7)-\mathrm{Mo}(2)$	103.17(14)	$\mathrm{Mo}(1)-\mathrm{O}(8)-\mathrm{Mo}(2)$	104.44(14)
$\mathrm{Mo}(1)-\mathrm{O}(8)-\mathrm{Mo}(2) \mathrm{a}$	102.28(14)	$\mathrm{Mo}(2)-\mathrm{O}(8)-\mathrm{Mo}(2) \mathrm{a}$	108.83(14)
$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{O}(7) \mathrm{a}$	70.43(13)	$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{O}(8)$	72.59(13)
$\mathrm{O}(7) \mathrm{a}-\mathrm{Mo}(1)-\mathrm{O}(8)$	73.74(13)	$\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(8)$	73.08(13)
$\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(8) \mathrm{a}$	73.40(13)	$\mathrm{O}(8)-\mathrm{Mo}(2)-\mathrm{O}(8) \mathrm{a}$	70.01(13)
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	175.9(6)	$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.1(6)
$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	175.7(6)	$\mathrm{Mo}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	175.6(6)
$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	177.0(6)	$\mathrm{Mo}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	171.3(6)

${ }^{a}$ Atoms, $\mathrm{Mo}(1) \mathrm{a}, \mathrm{Mo}(2) \mathrm{a}, \mathrm{O}(7) \mathrm{a}, \mathrm{O}(8) \mathrm{a}$, are symmetry equivalent.
ligands have an average $\mathrm{W}-\mathrm{C}-\mathrm{O}(\mathrm{Mo}-\mathrm{C}-\mathrm{O})$ bond angle of $177(2)^{\circ}\left(175(2)^{\circ}\right)$ and a C-O distance of $1.18(2) \AA(1.18(1) \AA)$.

Discussion

The structures observed for $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$ and for $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$ are the same as that of $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}[6]$. The symmetry of the anion is C_{2}, which coincides with the crystallographic 2-fold axis. Other polynuclear complexes of the alternating $A_{4} B_{4}$ type have similar symmetry or even more symmetric geometries, e.g. $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OMe}\right)\right]_{4}{ }^{4-}$ has D_{2} [7] and $\left[\mathrm{MO}(\mathrm{CO})_{2}(\mathrm{NO})(\mathrm{OH})\right]_{4}$ [5] has T_{d}. The observed $\mathrm{W}-\mathrm{W}$ (Mo-Mo) mean distance of $3.59(6) \AA(3.58(6) \AA$) indicates the absence of metal-metal bonds in such anions, since it is much longer than the $W-W$ single bonds reported elsewhere $3.222(1) \AA$ in $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~W}(\mathrm{CO})_{3}\right]_{2}$ [14], $3.155 \AA$ in $\mathrm{I}_{2} \mathrm{~W}_{2}(\mathrm{CO})_{4}$ [15], and 3.0256(4) \AA in $\mathrm{W}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{PPh}_{2}\right)_{2}$ [16]. The non-bonding between the metal atoms or ions are also formally in accord with the 18 -electron rule, where $\mu_{3}-\mathrm{OH}$ group is normally considered to be a five-electron donor. The obtuse $\mathrm{M}-\mathrm{O}-\mathrm{M}$ angles of $106(3)^{\circ}$ for 1 and $105(3)^{\circ}$ for 2 , and the acute $\mathrm{O}-\mathrm{M}-\mathrm{O}$ angles of $71(1)^{\circ}$ for 1 and $72(2)^{\circ}$ for 2 as well as the large metal separation are similar to those found for a series of cubane-like $A_{4} B_{4}$ complexes [17]. The average core bond angles and non-bonding $M-M$ distances of these complexes are listed in Table 6 for comparison. In contrast, shorter metal-metal

Table 6
Core bond angles (deg) and $\mathrm{M}-\mathrm{M}$ distances (\AA) for $\mathrm{A}_{4} \mathrm{~B}_{4}$ tetramers

Compound	$\mathrm{M}-\mathrm{X}_{\mu_{3}}$ - M	$\mathrm{X}_{\mu_{3}}-\mathrm{M}-\mathrm{X}_{\mu_{3}}$	M-M dist	Ref.
Compounds without M-M bonds				
$\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}^{4-}$	103.4(2)	74.6(1)	3.33(5)	6
$\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OMe}\right)\right]_{4}^{4-}$	102.9(2)	75.3(1)	3.31 (6)	3
$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}$	104.0(5)	74.3(1)	3.480(2)	18
$\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{SMe}\right)\right]_{4}$	101.8(4)	76.8(3)	3.853(3)	19
$\left[\mathrm{MO}(\mathrm{CO})_{2}(\mathrm{NO})\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}$	103(1)	76(1)	3.429(3)	5
$\left[\mathrm{HW}(\mathrm{CO})_{3}\left(\mu_{3} \mathrm{OH}\right)\right]_{4}$	104(1)	74(1)	3.479(3)	10
$\left[\mathrm{Os}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{O}\right)\right]_{4}$	102(2)	77(1)	3.222(4)	20
$\left[\mathrm{PtMe}_{3}\left(\mu_{3} \mathrm{OH}\right)\right]_{4}$	101.2(6)	77.6(6)	3.430(2)	21
Compounds with M-M bonds				
$\left[\mathrm{Cr}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mu_{3} \mathrm{O}\right)\right]_{4}$	93.1(3)	86.5(3)	2.81(9)	22
$\left[\mathrm{Fe}(\mathrm{NO})\left(\mu_{3} \mathrm{~S}\right)\right]_{4}$	73.4(1)	104.4(1)	$2.634(1)$	23
$\left[\mathrm{Fe}(\mathrm{NO})\left(\mu_{3}-\mathrm{Se}\right)\right]_{4}$	70.3	106.6	2.705	24

distances are also found in the cubane-like clusters, which normally have much smaller $\mathbf{M}-\mathbf{X}-\mathrm{M}$ angles (see Table 6) than those without metal-metal bonds.

A qualitative bonding description by Dahl [24] of 72 -electron metal cluster system, $\left[\mathrm{Fe}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{X}\right)\right]_{4}(X=S, S e)$, rationalized the completely non-bonding iron tetrahedron. These cubane-like iron tetramers, consisting of four $d^{6}-\mathrm{Fe}^{\text {II }}$, four six-electron donor X^{2-} ligands, and twelve two-electron donor CO ligands, are electronically equivalent to 1 and 2. Thus, the absence of a metal-metal bond in 1 or 2 is also in accord with Dahl's description.

The mean bond distances within the metal coordination sphere of 1 or 2 are normal. The $\mathrm{W}-\mathrm{O}\left(\mu_{3}\right)$ distance of $2.24(1) \AA$ is comparable to that in $\left[\mathrm{HW}(\mathrm{CO})_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{OH})]_{4}[10](2.21(5) \AA)$ and $\mathrm{Mo}-\mathrm{O}\left(\mu_{3}\right)$ distance of $2.25(1) \AA$ is comparable to that in $\left[\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{NO})\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}[5](2.20(1) \AA)$. The bond lengths of $1.92(1) \AA$ for W-C(CO) and 1.91(1) \AA for $\mathrm{Mo}-\mathrm{C}(\mathrm{CO})$ are shorter than those reported for other trisubstituted $\mathrm{M}(\mathrm{CO})_{6}$ derivatives [25], which are consistent with the negative charge on the anion. The average $\mathrm{C}-\mathrm{O}$ distances, $1.18 \AA$, for the orthogonal carbonyl ligands are in agreement with metal carbonyl complexes in general. The terminal carbonyl ligands are almost linearly coordinated in both complexes.

The presence of the $\mu_{3}-\mathrm{OH}$ groups was confirmed by isotopic studies. Firstly, the μ_{3}-OD derivative of 1 (2) gives a $\mu(O D)$ band at $2712 \mathrm{~cm}^{-1}\left(2723 \mathrm{~cm}^{-1}\right)$ but no high frequency band at $3676 \mathrm{~cm}^{-1}\left(3691 \mathrm{~cm}^{-1}\right)$. It is interesting that the $\nu(\mathrm{OH})$ bands of 1,2 , and $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}^{4-}\left(3695 \mathrm{~cm}^{-1}\right)$ all appeared at unusually high frequency. For comparison, $\nu(\mathrm{OH})$ appears as a sharp double band at $3550 \mathrm{~cm}^{-1}$ for $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4} \quad[4]$ and as a double band at $3640 / 3625 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}[26]$. Secondly, the peaks assignable to $\mu_{3}-\mathrm{OH}$ in the ${ }^{1} \mathrm{H}$ NMR spectra ($\delta 0.96 \mathrm{ppm}$ for 1 and -0.27 ppm for 2) disappeared upon addition of excess $\mathrm{D}_{2} \mathrm{O}$ to $\mathrm{CD}_{3} \mathrm{CN}$ a solution of 1 or 2 . In addition the $\mu_{3}-\mathrm{OD}$ derivative of 1 (2) does not have a peak at $0.96(-0.27) \mathrm{ppm}$ in $\mathrm{D}_{2} \mathrm{O}$ solution.

It is important to note that our spectroscopic data, together with elemental analyses, and X-ray structural analyses did not allow us to eliminate the possibility that $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{OH})\right]_{3}{ }^{3-}$ is in equilibrium with $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{OH})\right]_{4}^{4-}$ in the solution.

However, our ${ }^{1} \mathrm{H}$ NMR spectroscopic data strongly disfavor the existence of $(\mu-\mathrm{H}) \mathrm{W}_{2}(\mathrm{CO})_{10}{ }^{-}[27], \mathrm{HW}(\mathrm{CO})_{5}{ }^{-}[28]$, and $\mathrm{W}_{2}(\mu-\mathrm{OH})_{3}(\mathrm{CO})_{6}{ }^{3-}[9,29]$. These complexes were reported to form from reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with OH^{-}under different conditions. We presently do not know why no discernible $\mathrm{M}_{2}(\mu-\mathrm{OH})_{3}(\mathrm{CO})_{6}{ }^{3-}$ were detected in our case. When $\mathrm{M}(\mathrm{CO})_{3}$ (PMTA) was allowed to react with an excess (more than five-fold) of $\mathrm{Et}_{4} \mathrm{NOH}$ or KOH , the tetrameric $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{OH})\right]_{4}{ }^{4-}$ was contaminated with unidentified materials. No peaks assignable to $\mathbf{M}_{2}(\mu$ $\mathrm{OH})_{3}(\mathrm{CO})_{6}{ }^{3-}$ [29] were detected, however. A speculative mechanism for the formation of 1 and 2 from $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{PMTA})$ involves a reversible ring opening (with scission at the $\mathrm{M}-\mathrm{N}$ bond) followed by nucleophilic attack by OH^{-}. Such a mechanism has been proposed in the reaction of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{PNP})$ (PNP $=$ $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) with CO [30].

The large upfield shift of the hydroxide ligand in the ${ }^{1} \mathrm{H}$ NMR spectra is consistent with their basic character, i.e., the hydrogen atoms in $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OH}\right)\right]_{4}{ }^{4-}$ are readily replaced by deuterium with $\mathrm{D}_{2} \mathrm{O}$ (10 -fold excess) within 30 minutes, the reaction product being $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\mu_{3}-\mathrm{OD}\right)\right]_{4}{ }^{4-}$. Our preliminary results indicate that 1 reacts with electrophiles such as $\mathrm{NO}^{+} \mathrm{BF}_{4}{ }^{-}, \mathrm{Ph}_{3} \mathrm{PAuCl}$ and iodine. Further studies on the reactions of 1 and 2, as well as the extension of similar synthetic strategy to other cubane type complexes are in progress.

Supplementary material available: Tables SI and SII listing anisotropic temperature factors and hydrogen atom coordinates and isotropic thermal parameters (6 pages); tables of calculated and observed structure factors (66 pages); Table SIII listing all bond distances and angles (6 pages), are all available from the authors.

Acknowledgement

The authors express their appreciation to the Institute of Chemistry, Academia Sinica, and to the National Science Council, Republic of China, for support of this work.

References

1 (a) R.A. Sheldon and J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981; (b) C.N. Satterfield, Heterogeneous Catalysis in Practice, McGraw-Hill Inc., New York, 1980; (c) R. Higgins, P. Hayden, in C. Kemball (Ed.), Catalysis, The Chemical Society, 1977, Vol 1, Chapter 5.
2 K. Tanabe, in J.R. Anderson and M. Boudart (Eds.), Catalysis, Springer-Verlag, Berlin, 1981, Vol 2, Chapter 5.
3 (a) H. Knözinger, in B.C. Gates, L. Guczi and H. Knözinger (Eds.), Metal Clusters in Catalysis, Elsevier, Amsterdam, 1986, Chapter 6; (b) J.M. Basset and A. Choplin, J. Mol. Catal., 21 (1983) 95; (c) Y.J. Yermakov, J. Mol. Catal., 21 (1983) 35; (d) R. Barth, B.C. Gates, Y. Zhao, H. Knözinger and J. Hulse, J. Catal., 82 (1983) 147; (e) A. Brenner and D.A. Hucul, J. Am. Chem. Soc., 102 (1980) 2484.

4 (a) M. Herberhold and G. Süss, Angew. Chem., Int. Ed. Engl., 14 (1975) 700; (b) M. Herberhold; G. Süss, J. Ellermann and H. Gabelein, Chem. Ber., 111 (1978) 2931.
5 V. Albano, P. Bellon, G. Ciani and M. Manassero, J. Chem. Soc., Chem. Commun., (1969) 1242.
6 T.J. McNeese, T.E. Mueller, D.A. Wierda and D.J. Darensbourg, Inorg. Chem., 24 (1985) 3465.
7 T.J. McNeese, M.B. Cohen and B.M. Foxman, Organometallics, 3 (1984) 552.
8 E.W. Abel, W. Harrison, R.A. McLean, W.C. Marsh and J. Trotter, J. Chem. Soc., Chem. Commun., (1970) 1531.

9 (a) W. Hieber, K. Englert and K. Rieger, Z. Anorg. Allg. Chem., 300 (1959) 295, and 304.
10 V.G. Albano, G. Ciani, M. Manassero and M. Sansoni, J. Organomet. Chem., 34 (1972) 353.

11 J.E. Ellis and G.L. Rochfort, Organometallics, 1 (1982) 682.
12 (a) E.J. Gabe and F.L. Lee, Acta Crystallogr., 37 (1981) S339; (b) E.J. Gabe, Y. LePage, P.S. White and F.L. Lee, ibid., 43 (1987) C294.
13 International Tables for X-ray Crystallography: Kynoch, Birmingham, England, 1974, Vol IV and Vol III, p. 276.
14 R.D. Adams, D.M. Collins and F.A. Cotton, Inorg. Chem., 13 (1974) 1086.
15 M.C. Couldwell, J. Simpson and W.R. Robinson, J. Organomet. Chem., 107 (1976) 323.
16 S.G. Shyu, M. Calligaris, G. Nardin and A. Wojcicki, J. Am. Chem. Soc., 109 (1987) 3617.
17 A.S. Faust and L.F. Dahl, J. Am. Chem. Soc., 92 (1970) 7337.
18 B. Nuber, F. Oberdorfer and M.L. Ziegler, Acta Crystallogr. B, 37 (1981) 2062.
19 W. Harrison, W.C. Marsh and J. Trotter, J. Chem. Soc., Dalton Trans., (1972) 1009.
20 D. Bright, Chem. Commun., (1970) 1169.
21 T.G. Spiro, D.H. Templeton and A. Zalkin, Inorg. Chem., 7 (1968) 2165.
22 F. Bottomley, D.E. Paez and P.S. White, J. Am. Chem. Soc., 104 (1982) 5651.
23 (a) R.S. Gall, C.T.-W Chu, F.Y.-K Lo and L.F. Dahl, ibid., 104 (1982) 3409.
24 L.L. Nelson, F. Yip-kwailo, D. Rae and L.F. Dahl, J. Organomet. Chem., 225 (1982) 309.
25 (a) F.A. Cotton and R.M. Wing, Inorg. Chem., 4 (1965) 314; (b) D.E. Koshland, S.E. Myers and J.P. Cheswick, Acta Crystallogr. B, 33 (1977) 2013; (c) W.H. Hersh, J. Am. Chem. Soc., 107 (1985) 4599.
26 M. Herberhold, F. Wehrmann, D. Neugebauer and G. Huttner, J. Organomet. Chem., 152 (1978) 329.
27 M.D. Grilbone and B.B. Kedzia, J. Organomet. Chem., 140 (1977) 161.
28 (a) D.J. Darensbourg and A. Rokicki, ACS Symp. Ser., 152 (1981) 107; (b) D.J. Darensbourg and A. Rokicki, Organometallics, 1 (1982) 1685.
29 (a) U. Sartorelli, L. Garlaschelli, G. Ciani and G. Bonora, Inorg. Chim. Acta, 5 (1971) 191; (b) V.G. Albano and G. Ciani, M. Manassero, J. Organomet. Chem., 25 (1970) C55.
30 W.J. Knebel and R.J. Angelici, Inorg. Chem., 13 (1974) 632.

[^0]: ${ }^{n} B_{\text {eq }}$ is the mean of the principal axes of the thermal ellipsoid occupancy of $\mathrm{C} 1 \mathrm{~B}, \mathrm{C} 1 \mathrm{~B}, \mathrm{C} 3 \mathrm{~B}, \mathrm{C} 3 \mathrm{~B}$ ',
 C5B, С5B', C7B, C7B' $, ~ С 8 B, C_{B}^{\prime}=0.5$.

[^1]: * $12 / a$ in ref. 6 can be transformed into $C 2 / c$, a correction has to be made for $Z=4$ according to the formula given.

